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Abstract

In this paper, we propose a novel framework, called Dinkelbach NCUT (DNCUT), which

efficiently solves the normalized graph cut (NCUT) problem under general, convex constraints,

as well as, under given priors on the nodes of the graph. Current NCUT methods use generalized

eigen-decomposition, which poses computational issues especially for large graphs, and can only

handle linear equality constraints. By using an augmented graph and the iterative Dinkelbach

method for fractional programming (FP), we formulate the DNCUT framework to efficiently

solve the NCUT problem under general convex constraints and given data priors. In this frame-

work, the initial problem is converted into a sequence of simpler sub-problems (i.e. convex,

quadratic programs (QP’s) subject to convex constraints). The complexity of finding a global

solution for each sub-problem depends on the complexity of the constraints, the convexity of the

cost function, and the chosen initialization. However, we derive an initialization, which guaran-

tees that each sub-problem is a convex QP that can be solved by available convex programming

techniques. We apply this framework to the special case of linear constraints, where the solution

is obtained by solving a sequence of sparse linear systems using the conjugate gradient method.

We validate DNCUT by performing binary segmentation on real images both with and without

linear/nonlinear constraints, as well as, multi-class segmentation. When possible, we compare

DNCUT to other NCUT methods, in terms of segmentation performance and computational ef-

ficiency. Even though the new formulation is applied to the problem of spectral graph-based,

low-level image segmentation, it can be directly applied to other applications (e.g. clustering).

1 Introduction

This paper is about extending normalized graph cuts so the result satisfies general, convex constraints

under given priors on the graph. The new formulation is applied to and presented in terms of low

level image segmentation using spectral graph theory, a problem that has received extensive attention

recently. However, this framework can be applied to general data clustering problems, where the

aforementioned segmentation problem is a special case. In this problem, an image is represented by

an undirected graph, wherein nodes correspond to image pixels or regions, and edges connect pairs

of nodes. An edge has a weight proportional to the similarity of the properties of the connected nodes

(e.g. pixel intensities). Given such a graph representation, image segmentation becomes equivalent
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to partitioning the nodes of the graph into disjoint sets, or segments, which optimize a given cost

function. Such a partition is denoted as a graph cut. Traditionally, the cost of a cut between two

segments is the sum of weights corresponding to the graph edges that need to be severed to produce

this segmentation. However, other graph cut formulations exist, so graph cut methods are categorized

by the global cost function they optimize. If the objective is to minimize the cost of a cut between

two or more segments, then the problem can be formulated as a min-cut and efficiently solved as

a max-flow problem [3, 5, 11, 18]. This cost can include node priors by introducing artificial nodes

corresponding to the number of desired segments. The edge weights from these nodes to the rest of

the graph embed the node priors. In what follows, we will use the label unnormalized graph cuts to

denote this graph cut problem.

Despite the merits of the unnormalized graph cut formulation and its proposed algorithms, it is

biased towards producing cuts that contain a small number of nodes. Consequently, a normalized

version of this cost function has been proposed, in which the cost of the normalized cut (NCUT) in-

corporates the association cost of each segment (i.e. the sum of edge weights connecting nodes of this

segment to all other nodes in the graph), thus, suppressing the appearance of small cuts [23]. For a

detailed comparison of these two formulations, refer to [25]. Minimizing the resulting NCUT objec-

tive function is an NP hard discrete optimization problem, so it is relaxed to take on real values. The

popularity of this method can be partially attributed to its closed form approximation of the optimal

solution, using generalized eigen-decomposition. Unconstrained NCUT has been used extensively

for image segmentation and data clustering. In [26], the authors constrain the NCUT problem by

incorporating additional grouping constraints, in the form of linear homogeneous equalities. This is

extended to the case of non-homogeneous equalities in [9].

In all the above NCUT methods [9, 23, 26], the NCUT solution is obtained from either a single

generalized eigen-decomposition or a sequence of such decompositions. Even though these methods

offer certain advantages, their following shortcomings need to be addressed. (1) These methods only

allow for linear equality constraints. This is due to their underlying use of eigen decomposition to

minimize the Rayleigh quotient. For example, [6] showed that it is NP-hard, in general, to solve for

eigenvectors under linear inequalities. This suggests that if a unifying framework for such constrained

NCUT problems is desired, it should avoid using this quotient formulation. (2) Unlike unnormalized

graph cut techniques, these methods do not embed any unary terms (i.e. priors on individual graph

nodes) in the NCUT cost function, which is equivalent to assuming a zero prior for all nodes. (3)
Since these methods compute generalized eigenvectors of large matrices and form null spaces of

highly rank deficient matrices, their computational complexity remains a practical issue, despite the

special measures that were considered for complexity reduction.

Contributions

In this paper, we present a first step in the direction of formulating a unifying framework for convexly

constrained NCUT problems, which addresses the aforementioned limitations. The contributions of

this framework are threefold. (i) It allows the efficient solution of the NCUT problem under general

convex constraints. It uses the Dinkelbach method to transform the initial fractional problem into a

sequence of convexly constrained, quadratic programming (QP) problems, whose convexity is en-

sured by a suitable initialization that we construct. More importantly, the global solutions of these

problems converge superlinearly to the required solution of the fractional problem. Since the Dinkel-

bach method is central to our framework, we denote our proposed method as Dinkelbach NCUT

(DNCUT). In fact, the Dinkelbach method was recently used in the context of parametric max-flow
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algorithms in [12]. However, the energy function to be minimized was unconstrained and hence no

effort was made to construct a valid initialization that allows efficient estimation of the global so-

lution for each Dinkelbach iteration. (ii) Our framework can incorporate prior knowledge of nodes

belonging to different segments, which is equivalent to the unary term present in the energy function

minimized by unnormalized graph cut algorithms. This case arises in various supervised problems

including interactive segmentation and supervised clustering. These problems can not be solved us-

ing the current NCUT algorithms. (iii) Guaranteeing the convexity of each Dinkelbach sub-problem

allows this framework to handle general convex constraints, due to the availability of efficient con-

vex optimization techniques. Therefore, our proposed algorithm refrains from eigen-decomposition

and, in the case of linear constraints, it degenerates into solving a set of sparse linear systems using

conjugate gradients.

Mathematical Notation

Before proceeding with the details of the paper, we summarize the mathematical notations used in

the remainder of the paper. In what follows, a matrix is denoted by a bold, uppercase letter (e.g. W).

A vector is denoted by a bold, lowercase letter with an arrow above it (e.g. �x). A scalar is denoted

by a normal lowercase letter. Elements of vectors and matrices are indexed using parentheses. For

example, x(i) represents the ith element of �x, while W(i, j) represents the element of W at the ith

row and the jth column. Furthermore, a parenthesized superscript is added to a variable to denote its

value at a given iteration. For example, �x(k) represents the value of �x at the kth iteration. Also, every

optimization problem has a solution appended with a superscript ∗ (e.g. �x∗) and constraints (if any)

listed underneath the cost function prefixed by s.t., the abbreviation of such that.

We separate the discussion of applying hard and other general convex constraints to the NCUT

problem. This is done because hard constraints have direct impact on the cost function itself, while

the other constraints do not. In Section 2, we consider the problem of applying hard constraints (e.g.

placed by the user via interactive placement of constraints, which we call here interactive NCUT).

In Section 3, we describe the augmented graph structure used in formulating and solving the NCUT

problem. In Section 4, we use the Dinkelbach approach [8] to formulate a unifying framework for

solving the convexly constrained NCUT problem. We also describe an algorithm to solve this problem

with linear constraints. Finally, we test the algorithm by applying it to low-level segmentation of real

images in Section 5.

2 Hard Constraints

In this section, we consider the NCUT problem under the first type of convex constraints, namely

hard constraints. To put this problem into context, we visit the unnormalized graph cut problem,

which will also help us introduce the interactive version of the NCUT problem. Due to the nature

of the two different cost functions optimized in the unnormalized graph cut problem and its corre-

sponding NCUT problem, the analysis/solution of these two problems is quite different. However,

we still make use of two general concepts used in the unnormalized graph cut context: the augmented

graph structure and the notion that hard constraints directly affect the graph’s weight matrix. We will

elaborate on these two points in what follows. Next, we introduce the terminology to be used and give

a brief description of the unnormalized graph cut and interactive unnormalized graph cut problems.
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Figure 1: Example of a graph cut (�x), which separates nodes 1, 2, 3 (labeled as A) from 4, 5, 6 (labeled

as B). The cost of �x is the sum of the edge weights that have to be cut to produce the final labeling.

Note that the regional costs are represented by the perforated blue lines, while the solid green lines

represent the boundary costs.

2.1 Unnormalized Graph Cuts and Hard Constraints

Let G = (P, E) be an undirected graph, where P denotes the set of nodes contained in G, and E
the set of corresponding edges. Let W denote the edge weight matrix of G, where W (i, j) is a

non-negative weight associated with the edge connecting nodes i and j in P . This non-negativity is

the only restriction on W, whereby the computation of pairwise edge weight values is application-

dependent. When applied to low-level spectral graph image segmentation, an edge weight between

two pixel nodes is commonly based on the similarity in color and/or image gradient between these

two pixels. A graph cut �x is a binary segmentation of the nodes in P , where ∀k = 1, · · · , |P|,
x(k) = 1 if the kth node belongs to segment A and x(k) = 0 if it belongs to segment B (refer

to Figure 1). The aim of a graph cuts algorithm is to find �x that minimizes a given cost function.

In [11], the cost function was defined as E�x(A, B) = λR(�x) + S(�x). The regional cost term,

R(�x) =
∑

i∈P Ri(x(i)), is the sum of costs incurred by assigning each node i to its label x(i). The

boundary (cut) term, S(�x) = cut(A, B) =
∑

i∈A, j∈B W (i, j), is the cost of the cut resulting in

segments A and B. Numerous efficient algorithms have been developed to find the global minimizer

of E�x(A, B) [3].

The interactive unnormalized graph cuts problem is an extension of the aforementioned prob-

lem with the addition that some hard constraints are applied to the nodes of P (i.e. labels of some

nodes are known beforehand). These constraints can originate from direct user interaction or domain

specific knowledge. Many recent works have addressed this problem under different forms of user

interaction [4, 14, 22]. We denote SA and SB to be the sets of nodes satisfying the hard constraints

(i.e. whose labels are known beforehand to be 1 or 0, respectively). Under these constraints, the

minimization problem becomes more difficult to solve. However, Boykov et. al. [4] proved that there

is no need to explicitly solve this new problem. They show that it is equivalent to an unconstrained

unnormalized graph cut problem on G with the edge weights appropriately modified to implicitly

reflect the hard constraints. While such an equivalence exists for the interactive unnormalized graph

cut problem, it does not transfer to the corresponding NCUT problem, which we will appropriately

call the interactive NCUT problem. Next, we show how these hard constraints are explicitly applied
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to this NCUT problem. We study this case independently, since it will have direct influence on the

cost function to be minimized.

2.2 NCUT and Hard Constraints

A normalized cut of G into segments A and B has the following cost: NCUT�x(A, B) = cut(A,B)∑
i∈A,j∈P W(i,j)+

cut(A,B)∑
i∈B,j∈P W(i,j) , where the cut cost is normalized by the association cost of each segment. The NCUT

formulation defined in [23] is:

�yNCUT = arg min
�yT (D − W)�y

�yTD�y

s.t.

{
y(i) ∈ {1,−b} ∀i = 1, · · · , |P|
�yTD�1 = 0

(1)

where D is the degree matrix of G (i.e. D = diag
(
W�1

)
) and b =

∑
x(i)>0 D(i,i)∑
x(i)<0 D(i,i) . Here, we note

that b quantifies how connected (similar) each segment is to the rest of the graph. A large value of b
(> 1) means that the nodes of segment A have stronger connections to the rest of the graph than those

of segment B. Since the value of b is dependent on the final labeling, solving this problem exactly

becomes infeasible. In general, the optimization problem in Eq (1) is NP hard, so it is relaxed to

render a real solution. This vector is discretised as a post processing step, which does not incorporate

the value of b. In [23], the authors show that the solution to the relaxed problem can be obtained

in closed form by solving a generalized eigenvalue problem (i.e. eig(D − W,D)). This is a direct

conclusion from the fact that this relaxed problem is in the form of a Rayleigh quotient. In fact,

�yNCUT is computed as the generalized eigenvector corresponding to the second smallest eigenvalue.

In [23], the NCUT framework was applied to low-level image segmentation and the edge weight

between each pair of nodes/pixels was computed using intervening contours [16].

Now, let us extend Eq (1) to include some hard constraints, rendering the interactive NCUT prob-

lem. To the best of our knowledge, the interactive NCUT problem has not been addressed previously

in the literature. To solve this problem, we cannot use the same graph used in the traditional NCUT

formulation. This graph is composed solely of pixel nodes originating from the image itself. To this

graph, we add two artificial nodes A and B to represent the two segments, thus, differentiating them

from the pixel nodes. This augmented graph will allow us to incorporate hard constraints and in-

clude prior knowledge. We decompose the labeling vector �y into three disjoint parts: (1) �y+ (of size

N+ = |SA|), which corresponds to the pre-labeled nodes of SA, (2) �y− (of size N− = |SB|), which

corresponds to the pre-labeled nodes of SB , and (3) �yu (of size Nu), which designates the unknown

labels of the rest of the nodes in the graph. We use the augmented graph in Figure 2 to illustrate an

example. We update W and D to include the hard labels, as shown below. The nodes corresponding

to �y+ are listed first, followed by those of �y−, and then �yu. Similar to the interactive unnormal-

ized graph cut problem seen before, we embed the hard constraints into the edge weights by setting

W (i, j) = W
(
i′, j′

)
= K, W

(
i, i

′
)

= W
(
j, j

′
)

= 0 for every node pair (i, j) ∈ SA × SA

and
(
i
′
, j

′
)
∈ SB × SB . This means that nodes belonging to the same segment are maximally sim-

ilar, where the similarity value is a constant denoted by K. For now, K and b are left unknown. In
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Figure 2: Example of a graph with hard constraints colored in red. Here, N+ = N− = 2, where two

pixel nodes are already labeled as A and B. The perforated blue edges are designated weights that

embed prior knowledge of the unknown nodes. The bold red edges have weights of K. Bold green
edges represent the similarity between the unknown nodes they connect.

Section 4.2.2, we show how they are computed. Similarly, the nodes belonging to different segments

are minimally similar. Furthermore, we set W (i, j) = p+
u (i) and W

(
i, j

′
)

= p−
u (i) for every

i �∈ SA ∪ SB , j ∈ SA, and j
′ ∈ SB . Here, prior knowledge can be incorporated. The edge weight

between an unknown node and the hard constraints (i.e. the pre-labeled nodes) can be viewed as the

likelihood of that unknown node belonging to either segment. So, if a likelihood node model (e.g.

a Gaussian Mixture Model (GMM)) is available, it is used to evaluate
−→
p+

u and
−→
p−

u . In our experi-

ments, given hard constraints, we assume the Nearest Neighbor model, so we set p+
u (i) and p−

u (i)
to the maximum edge weight between node i and nodes of SA and SB respectively. In the absence

of prior knowledge, these edge weights are set to the same constant. In our experiments and in the

absence of hard constraints, we set p+
u (i) = p−

u (i) = 1
2 , since all edge weights (based on intervening

contours [15]) take values in [0, 1] for the case of low-level image segmentation. Consequently, the

updated W and D matrices are:

W =

⎡
⎣ K1 0 P+

u

0 K1 P−
u

P+T
u P−T

u Wu

⎤
⎦ ; D =

⎡
⎢⎣ (KN+ + �1T

−→
p+

u )I 0 0

0 (KN− + �1T
−→
p−

u )I 0
0 0 Du + PD

⎤
⎥⎦

where PD = diag
(
N+

−→
p+

u + N−
−→
p−

u

)
, P+

u = �1(
−→
p+

u )T , and P−
u = �1(

−→
p−

u )T (refer to Figure 2).

3 DNCUT Graph Structure

As opposed to the traditional NCUT formulation that only uses pixel nodes to construct the graph,

we adopt the augmented graph structure used in the unnormalized graph cut problem. As illustrated

before in Figure 2, the augmented graph adds artificial nodes to the original graph. These added nodes
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correspond to the “sink” and “source” terminals in [18]. This augmented graph structure allows for

two major benefits.

1. It inherently incorporates prior knowledge. We designate
−→
p+

u and
−→
p−

u to be the vectors of edge

weights connecting the unknown nodes to the nodes in segments SA and SB respectively. In

fact, they correspond to the unary, regional cost terms included in the unnormalized graph cut

formulation. They can also be viewed as the likelihoods that the unknown nodes belong to

each of the two segments. As such, the traditional NCUT problem becomes a special case

of the DNCUT framework, when
−→
p+

u =
−→
p−

u → �0 (i.e. zero priors) and K → 0. Figure 3

shows an example of how prior knowledge on the nodes of the augmented graph can improve

segmentation/labelling results. Figure 3(b) is the binary DNCUT segmentation, if uniform prior

knowledge is assumed on the nodes of this graph. The prior knowledge in Figure 3(c) depicts

how nodes belonging to class SA and SB should look like in the image. Note the significant

difference in segmentation when comparing Figure 3(b) to Figure 3(d). Traditional NCUT

methods cannot incorporate prior knowledge on the nodes of the graph.

(a): original image (b): DNCUT (c): prior (d): DNCUT with prior

Figure 3: For the image in (a), the unconstrained binary DNCUT segmentation is provided in (b).

This segmentation is obtained when all unknown nodes have equally likely prior probabilities of

belonging to SA and SB (i.e. p+
u (i) = p−

u (i) = 1
2 ). However, (d) represents the DNCUT solution

when nonuniform prior probabilities are used. These probabilities are based on how similar the

unknown nodes are to the nodes delineated by the green (SA) and red (SB) strokes. We used a simple

GMM (two Gaussians) likelihood model. Note how the incorporation of prior knowledge rendered

the binary DNCUT segmentation more meaningful.

2. It supports an indirect connection between every pair of pixel nodes in the graph, while preserv-

ing the sparsity of W. In the case of image segmentation and due to memory restrictions, W
is made sparse by setting the edge weights between far pixels to 0. For the traditional NCUT

problem, this can yield pairs of nodes that have high similarity but are neither directly nor in-

directly connected in the graph. This biases the segmentation to assign such nodes to different

segments. This usually occurs due to occlusions. On the other hand, the DNCUT framework

ensures an indirect connection between these nodes, via the nodes in SA and SB , thus, alleviat-

ing the previous segmentation bias. In Figure 4, we show an example of the traditional NCUT

and the DNCUT solutions to the unconstrained NCUT problem described in Section 2.2 [23].

Note that these solutions are binary solutions obtained by discretising the real solutions to the

unconstrained NCUT problem.
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(a): original image (b): traditional NCUT (c): DNCUT

Figure 4: For the image in (a), the traditional NCUT solution to the unconstrained NCUT problem is

illustrated in (b) and the DNCUT solution in (c). Note that similar pixel nodes (i.e. sky) are assigned

to different segments in (b) and to the same segment in (c).

4 DNCUT Framework under Hard & Convex Constraints

In this section, we highlight the details of our proposed DNCUT framework. We consider the con-

vexly constrained NCUT problem, where hard and/or other convex constraints are applied. Given

sets SA and SB and the updated weight matrix W, we formally define the problem as a fractional

quadratic program (FQP) with convex constraints, as shown in Eq (2). Note that the following setup

is the same even if no hard constraints exist. For this special case, SA and SB only contain a single

node each (i.e. N+ =N−=1).

�y∗
u = arg min

�yT
u Q�yu + �mT�yu + (a − c)

�yT
u R�yu + a

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yu(i) ∈ {1,−b} ∀i = 1, · · · , Nu

�yT
u R�1 + q = 0

Φi(�yu) ≤ 0, ∀i = 1, · · · , |I|
Ψj(�yu) = 0, ∀j = 1, · · · , |E|

(2)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q = (Du − Wu) + PD = Lu + PD, Q ∈ S
+
Nu

�m = 2
(
bN−

−→
p−

u − N+

−→
p+

u

)
a = N+

(
KN+ + �1T

−→
p+

u

)
+ b2N−

(
KN− + �1T

−→
p−

u

)
c = K

[
(N+)2 + (bN−)2

]
R = Du + PD, R ∈ S

+
Nu

q = N+

(
KN+ +�1T

−→
p+

u

)
− bN−

(
KN− + �1T

−→
p−

u

)
Φi(�x) and Ψj(�x) are convex ∀i = 1 · · · |I|, j = 1 · · · |E|

(3)

We define the Laplacian matrix corresponding to the unknown nodes as Lu, which is known

to belong to S
+
Nu

=
{
X ∈ R

Nu×Nu : X = XT , X 	 0
}

(i.e. the set of symmetric positive semi-

definite matrices of size Nu × Nu) [20]. For image segmentation, Wu and Q are sparse, in general.
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Φi(�yu) and Ψj(�yu) are general convex constraints that can be linear (e.g. partial groupings [26]) or

non-linear (e.g. upper bounds on ||�yu||2).

We keep b and K as scalar variables. Consequently, �m, a, c, and q are variables too. Note that the

value of b depends on �y∗
u itself and that the problem in Eq (2) is still an NP hard discrete optimization

problem, so we propose two forms of relaxation: (1) we relax �yu to take on real values and (2) we

assume b takes on a constant value b0. In Section 4.2.2, we show how K and b0 are computed in the

DNCUT framework. The relaxed problem becomes the FQP defined in Eq (4).

�y∗
u = arg min

[
H (�yu) =

F (�yu)
G(�yu)

]
= arg min

�yT
u Q�yu + �mT�yu + (a − c)

�yT
u R�yu + a

s.t.

⎧⎪⎨
⎪⎩

�yT
u R�1 + q = 0

Φi(�yu) ≤ 0,∀i = 1 · · · |I|
Ψj(�yu) = 0, ∀j = 1 · · · |E|

(4)

Eq (4) is no longer a Rayleigh quotient, solvable by general eigen-decomposition, as compared

to the traditional unconstrained NCUT formulation. As such, there is no closed form solution for this

problem. In particular, [6] showed that it is NP-hard, in general, to solve for general eigenvectors

under linear inequalities. So, we propose an iterative algorithm to find the global minimum of this

optimization problem using Dinkelbach’s method for fractional programming (FP) [8, 21]. To make

the paper self-contained, we give a brief description of this algorithm next.

4.1 Dinkelbach Algorithm for Fractional Programming

Given two continuous functions f : R
n → R and g : R

n → R defined on a compact set S ⊆ R
n such

that g (�x) > 0 ∀�x ∈ S, the fractional programming problem is to find the global minimizer, �x∗, of

h (�x) = f(�x)
g(�x) . According to the parametric approach of Dinkelbach [8], �x∗ minimizes this problem

if and only if F(�x∗, λ∗) = min �x∈S [f (�x) − λ∗g (�x)], where λ∗ = h (�x∗). Dinkelbach proved that

F(�x, λ) is monotonically decreasing in λ. This equivalence was extended to prove that λ∗ can be

reached iteratively. In fact, he proposed an algorithm that produces a sequence of monotonically

decreasing values of λ(i) = h
(
�x(i)

)
, which converges superlinearly to λ∗.

The Dinkelbach algorithm was extended by [21] to provide a general framework for FP’s, sum-

marized below as Algorithm 1. λ∗ is the global minimum value of the objective function. Here,

we emphasize that the superlinear convergence property is only regarding the iterations needed to

achieve λ∗ and not the convergence of each iteration. Note that each iteration involves solving a

different optimization problem, which might be an NP hard problem in its own right! Consequently,

choosing the initial guess �x(0) is not a trivial task, since setting it to an arbitrary value might lead to a

sequence of NP hard problems. However, we choose �x(0) to reduce the computational complexity of

each iteration and the total number of iterations required.

4.2 Applying the Dinkelbach Algorithm to Eq (4)

Eq (4) fits the form required to apply the Dinkelbach algorithm, where S = {�yu : �yT
u R�1 + q =

0,Φi(�yu) ≤ 0 ∀i = 1, · · · , |I|,Ψj(�yu) = 0, ∀j = 1, · · · , |E|}, f = F , g = G, and �y(0)
u = �x(0). The

resulting optimization problem to be solved in each iteration of Dinkelbach(S, F, G, �y(0)
u ,ε) is a QP

subject to convex constraints. Eq (5) shows the problem to be solved at iteration i.
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Algorithm 1: Dinkelbach
Input : S, f , g, �x(0) ∈ S, ε

Output: Nε,
{
λ(i)

}Nε

i=0
, �x∗, and λ∗

begin1

Initialization: λ(0) = h
(
�x(0)

)
=

f(�x(0))
g(�x(0)) ; i = 0; δ(i) ← ∞; Nε = 1; λ∗ = λ(0)

2

while δ(i) > ε do3

Solve �x∗ = arg min�x∈S
[
f (�x) − λ(i)g (�x)

]
4

δ(i + 1) = |f (�x∗) − λ(i)g (�x∗) |5

Nε ← Nε + 1, i ← i + 16

If δ(i + 1) ≤ ε: λ∗ = h (�x∗), break7

else λ(i+1) = h (�x∗)8

end9

end10

end11

�y∗
u = arg min

[
�yT

u

(
Q − λ(i)R

)
�yu + �mT�yu +

(
1 − λ(i)

)
a − c

]
s.t. �yu ∈ S (5)

The computational cost of each iteration is highly dependent on the nature of the matrix M(i) =
Q − λ(i)R. If M(i) 	 0, the problem becomes a convex QP, whose global minimum can be found

efficiently depending on the nature of S. However, if M(i) has at least one negative eigenvalue, then

finding the global minimum of Eq (5) becomes NP hard [19]. Therefore, it is essential that we study

the existence/uniqueness of an initial guess �y(0)
u that guarantees the convexity of each Dinkelbach

iteration or equivalently the positive semi-definiteness of each M(i).

4.2.1 Dinkelbach Initialization for Eq (4): λ(0)

In what follows, we will determine an α bound on λ(0) that ensures M(i) 	 0 ∀ i = 0, · · · , Nε,

thus, making Eq (5) convex for every iteration (refer to Theorem 1). Furthermore, we show how to

construct a valid �y(0)
u that satisfies this α bound.

Theorem 1 (α Bound on λ(0)). If λ(0) ≤ α, M(i) 	 0 ∀ i = 0, · · · , Nε. Here, α = min (N+

−→
p+

u +N−
−→
p−

u )
max (R)

is a non-trivial, upper bound computed without eigen-decomposition.

Proof. We propose to select λ(0) in order to guarantee M(i) 	 0 ∀ i = 0, · · · , Nε. Actually, this is

equivalent to ensuring M(0) 	 0, since there exists a recursive relationship between M(i) and M(0):

M(i) = M(0) +
(
λ(0) − λ(i)

)
R. Notice that R 	 0 and λ(0) > λ(i) ∀ i = 1, · · · , Nε (refer to

Section 4.1). To do this, we study the relationship between the eigenvalues of M(0), PD, R, and Q,

which are matrices in R
Nu×Nu . Here, we use the eigenvalue notation ρk (B) to denote the kth largest

eigenvalue of matrix B. Using the results of [2, 24], we bound the eigenvalues of M(0) as follows:
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ρNu (Q) ≤ ρj

(
M(0)

)
+ λ(0)ρj (R) ≤ ρ1 (Q) ∀ j = 1, · · · , Nu

Since Q,PD ∈ S
+
Nu

, we can bound the eigenvalues of Q in a similar manner to give: ρNu (Q) ≥
ρNu (PD) + ρNu (Lu). Here, we use the fact that the smallest eigenvalue of a Laplacian matrix is

zero [23] (i.e. ρNu (Lu) = 0). This step is performed to avoid calculating ρNu (Q), which is compu-

tationally expensive. But, it also loosens the bound on λ(0), which may lead to slower convergence.

However, even with this step, our experiments show that merely 1-3 Dinkelbach iterations are needed

for convergence.

Combining the above results, we find that ρj

(
M(0)

) ≥ min (diag (PD)) − λ(0)R(j, j). This sim-

plification is possible because PD is a diagonal matrix and its eigenvalues are its diagonal elements

themselves. For M(0) 	 0, we require that ρj

(
M(0)

) ≥ 0 ∀ j = 1, · · · , Nu. This can be achieved

when: λ(0) ≤ α, where α = min (N+

−→
p+

u +N−
−→
p−

u )
max (R) .

4.2.2 Dinkelbach Initialization for Eq (4): �y(0)
u

Theorem 1 proved the existence of a non-trivial upper bound for λ(0); however, it did not show how

to find a particular value of �y(0)
u that satisfies this bound (if one exists). Here, we construct such a

�y(0)
u , by setting b0 and K to appropriate values. From λ(0) = H

(
�y(0)

u

)
≤ α, we obtain a quadratic

feasibility problem with convex constraints, as shown in Eq (6), with (Q − αR) 	 0.

⎧⎪⎨
⎪⎩

(I): �y(0)T
u (Q − αR) �y(0)

u + �mT�y(0)
u + (1 − α) a − c ≤ 0

(II): �dT�y(0)
u + q = 0 (�d = R�1)

(III): Φi(�y
(0)
u ) ≤ 0,Ψj(�y

(0)
u ) = 0, ∀ i = 1, · · · , |I|, ∀ j = 1, · · · , |E|

(6)

We define ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = −α
[
(N+)2 + (bN−)2

]
β2 = (1 − α)

[
N+

(
�1T

−→
p+

u

)
+ b2N−

(
�1T

−→
p−

u

)]
β3 =

[
(N+)2 − b (N−)2

]
β4 =

[
N+

(
�1T

−→
p+

u

)
− bN−

(
�1T

−→
p−

u

)]
(1 − α) a − c = β1K + β2

q = β3K + β4

Replacing (II) (i.e. K = −�dT �y
(0)
u +β4

β3
) in (I) and enforcing that K ≥ 0, we obtain an equivalent

feasibility problem, where r (b) = β1β4

β3
− β2, as shown in Eq (7). Now, all three constraints are

dependent on the value of b alone.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(I): �y(0)T
u (Q − αR) �y(0)

u +
(

�m − β1

β3

�d
)T

�y(0)
u ≤ r (b)

(II):
�dT �y

(0)
u +β4

β3
≤ 0

(III): Φi(�y
(0)
u ) ≤ 0,Ψj(�y

(0)
u ) = 0, ∀i = 1 · · · |I|, ∀j = 1 · · · |E|

(7)
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By setting b to b0 = arg maxb≥0 r (b), we maximize the upper bound on (I). In fact, it can be shown

(refer to Appendix A) that this bound can be made arbitrarily large, if b0 = κ
(

N+

N−

)2
, where κ is

chosen in the following manner.

{
κ = 1 − ε if τ ≤ 1
κ = 1 + ε if τ > 1

where

⎧⎪⎪⎨
⎪⎪⎩

ε ≥ 0, ε → 0

τ =
N−

(
�1T

−→
p+

u

)
N+

(
�1T

−→
p−

u

)

As stated in Section 2.2, b quantifies how connected each segment is to the rest of the graph. Ideally,

the value of b is dependent on the final solution �y∗
u. However, subject to the hard constraints (if any)

and prior to computing �y∗
u, b0 is a reasonable estimate of b. In the absence of hard constraints (i.e.

N+ = N− = 1), b0 → 1. In the traditional NCUT formulation [23], no attempts were made to

approximate b.

Therefore, by setting b = b0, we can construct a feasible solution to Eq (7) by solving the convex

QP shown in Eq (8). Due to the convexity of the cost function and the constraints in Eq (8), we are

guaranteed that a solution exists. This solution can be obtained by using a suitable QP solver (e.g.

methods based on trust regions, active sets, etc.) to find the global minimum. Moreover, the sparsity

of (Q − αR) should be exploited to reduce the overall computational complexity.

�y(0)
u = arg min

�x

[
�xT (Q − αR)�x +

(
�m − β1

β3

�d
)T

�x

]

s.t.

{
�dT �x+β4

β3
≤ 0

Φi(�x) ≤ 0,Ψj(�x) = 0
(8)

4.3 Proposed DNCUT Algorithm

In Algorithm 2, we show the steps required to solve a convexly constrained NCUT problem, under

the DNCUT framework. This algorithm reiterates how b, K, and �y(0)
u are computed to ensure that

M(i) 	 0 in every iteration of the Dinkelbach algorithm. Notice that the global minima of Eq (5) and

Eq (8) are computed using the same convex QP solver. We gain significant speed up by initializing

the solution of each Dinkelbach iteration with the solution of the previous one. In the discretization

step, we cluster the values of the relaxed solution �y∗
u to obtain the binary solution. Any clustering

algorithm can be used here (e.g. k-means clustering with k = 2).

Beyond Binary Segmentation: DNCUT can be extended to multi-class (C ≥ 3) segmentation in a

recursive fashion, similar to what was done in [16,23]. We first construct an over-segmentation of the

image by clustering the values of �y∗
u into k � C clusters. No particular choice of clustering algorithm

is required here. In our experiments, we used both k-means clustering and mean shift clustering [10].

Then, the k segments are greedily merged until only C segments remain. At each step, two clusters

are merged, if the NCUT cost between them is the largest among all other pairs of clusters. This

guarantees that the merged segments are the “most similar”. Each resulting segment does not need

to be spatially connected (i.e. spatially fragmented labels might occur). In our experiments, this

simple merging method produced meaningful results; however, more elaborate merging schemes can

be employed.
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Algorithm 2: DNCUT

Input : S, Wu,
−→
p+

u ,
−→
p−

u , N+, N−, ε, and ε
Output: �y∗

u and λ∗

begin1

Use ε to compute b = b0 = κ
(

N+

N−

)2

2

Store PD, Q, R, �m, and �d3

Compute α, β1, β2, β3, and β44

Solve Eq (8) =⇒ �y(0)
u [QP Solver]5

Compute K = −�dT �y
(0)
u +β4

β3
, a, c, q, and λ(0) = H

(
�y(0)

u

)
6 (

Nε, {λ(i)}Nε
i=0, �y∗

u, λ∗
)

= Dinkelbach(S, F (�yu), G (�yu), �y(0)
u , ε) [QP Solver]7

Discretise: �y∗ =
[
�1T − b�1T �y∗T

u

]T

8

end9

4.4 Special Case: DNCUT under Linear Constraints

In this section, we describe how to efficiently apply the DNCUT framework under linear in/equality

constraints. The reason we give this type of constraint special attention is twofold. (1) Linear con-

straints encode important first-order relationships between graph nodes, such as partial groupings [26]

or area constraints [9]. However, current methods are restricted to linear equality constraints. In what

follows, we show that DNCUT readily incorporates linear inequalities. (2) There exist efficient itera-

tive methods that solve the underlying convex QP (e.g. interior point or active set methods).

As emphasized earlier, we need a single QP solver to find the global minima of the convex QPs

in Eq (8) and Eq (5). We use a basic active set solver for the QP in Eq (9).

min �xTA�x + �bT�x

s.t.

{
C�x ≤ �d
E�x = �f

(9)

where A ∈ S
+
Nu

, C ∈ R
|I|×Nu , E ∈ R

(|E|+1)×Nu , �b ∈ R
Nu , �d ∈ R

|I|, and�f ∈ R
(|E|+1). Also, for our

implementation purposes, we assume that C and E are sparse matrices (e.g. case of partial groupings).

This assumption highly reduces the complexity of the active set method, whose fundamental step

employs solving a large, sparse linear system with conjugate gradients. When |I| = 0, there exists

a closed form solution, which requires solving a pair of linear systems. Also, if |E| = 1 and no

hard constraints exist, the problem degenerates to the unconstrained NCUT problem. When hard

constraints are applied, the problem becomes equivalent to interactive NCUT. More details of the

optimization technique can be found in Appendix B.

5 Experimental Results

We conducted a set of image segmentation experiments to verify the correctness of our formulation

and the proposed DNCUT algorithm. Using the NCUT criterion for image segmentation was chosen
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to only validate the DNCUT framework and to compare it against other NCUT algorithms. The

segmentation performs only as well as the underlying NCUT formulation (i.e. our objective is only

a more general NCUT framework and algorithm). The results demonstrate that our algorithm can

accept hard or other linear constraints and efficiently derive a solution.

One problem that any image-as-a-graph approach must face is the need for large memory, to

accommodate the large graphs created by the large number of pixels in any reasonably sized image.

In particular, forming the weight matrix Wu is the memory bottle-neck for our DNCUT algorithm,

as it is for the original NCUT implementation [23]. This problem may be partly addressed by a

multiscale, coarse-to-fine implementation of DNCUT, similar to [7]; however, its extension to the

DNCUT framework is left to future work. In our experiments, there was no need for down-sampling

images, since the number of pixels in each image did not exceed the maximum allowable number of

nodes. The edge weights between neighboring nodes are computed using intervening contours [16],

applied to the the grayscale version of the image. We use the default parameters (e.g. scale) that

are available in the implementation of [16]. These weights take on values ranging from 0 to 1. Wu

is made sparse by setting the weights between nodes lying farther than a certain distance (i.e. 10
pixels) from each other to zero. For an unknown node i, p+

u (i) and p−
u (i) are heuristically set to the

maximum similarity between node i and all nodes of SA and SB respectively. In the absence of hard

constraints (i.e. N+ = N− = 1), we set p+
u (i) = p−

u (i) = p. In fact, the DNCUT solution becomes

equivalent to the traditional NCUT solution when p → 0. For our experiments, we set p = 1
2 . Here,

we note that if a probabilistic model exists for the graph nodes, p+
u (i) and p−

u (i) can be set to the

likelihood that node i belongs to A and B, respectively. The tolerance values are: ε = 10−3 and

ε = 10−5.

In what follows, we give the complexity of the DNCUT algorithm (Section 5.1), compare the

performance of DNCUT to two other NCUT algorithms when applied to the unconstrained binary

NCUT problem (Section 5.2), and show segmentation results of DNCUT when applied to the linearly

and nonlinearly constrained binary NCUT problem (Section 5.4) and to the unconstrained multi-class

segmentation problem (Section 5.5).

5.1 Complexity:

All our image segmentation experiments were executed using MATLAB 7.6 on a 2.4 GHz, 4GB RAM

PC. With hard and linear constraints, our algorithm required 1-3 Dinkelbach iterations to converge.

In general, the worst case complexity of our algorithm is O
(
μDμAN

3/2
u

)
, where Nu is the total

number of unknown nodes in G and O
(
N

3/2
u

)
is the worst case complexity of solving a sparse linear

system with Nu variables using conjugate gradients. μD is the maximum number of Dinkelbach
iterations required for convergence and μA is the maximum number of active set iterations needed for

one Dinkelbach iteration to converge. When the constraints are linear equalities, μA = 1.

5.2 Validation:

Here, we demonstrate the correctness of DNCUT by comparing it to two previous NCUT implemen-

tations [7, 23] applied to the same image. This is done quantitatively for the case of unconstrained

NCUT (i.e. |E| = |I| = 0), where the global solution to the relaxed NCUT problem is known to be

the second smallest generalized eigenvector (i.e. eig2(D − W,D)). In this case, N+ = N− = 1
(i.e. “source” and “sink” are only included). For all three algorithms, we explicitly apply the hard
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constraints by setting y+ = 1 and y− = −b0.

The NCUT methods we compare against are the original algorithm described in [23] and its multi-

scale version described in [7]. These algorithms use implicitly restarted Arnoldi/Lanczos methods for

sparse matrices to perform eigen-decomposition in an iterative fashion [13]. The run-time of this it-

erative decomposition is determined by the relative tolerance εeig. The iterations are terminated when

the relative change in eigen solutions at the current and previous iterations is less than εeig. On the

other hand, DNCUT solves the unconstrained problem by solving a pair of sparse linear systems. In

fact, this pair of systems can be solved simultaneously, using the iterative conjugate gradient method.

This is true since the conjugate directions for one of the systems can be used for the other. The run-

time of DNCUT is determined by the relative tolerance εCG, which defines the stopping criterion for

the conjugate gradient method. When the relative change in the solution to the linear system is less

than εCG, the algorithm terminates. For all three algorithms, the run-times do not include the time

needed to construct the weight matrix Wu.

In Figure 5, we show comparative results for the three aforementioned algorithms when applied

to images in the Berkeley segmentation dataset [17]. Each image in this dataset has ∼155, 000 pix-

els/nodes. We aim to show how the NCUT cost (as defined in Eq (4)) varies for each algorithm and for

different run-times (i.e. for different stopping criteria). On each image in the dataset, we ran the three

algorithms with varying stopping criteria and registered their corresponding NCUT costs. H (O),
H (M), and H (D) denote the costs of the original NCUT [23], multiscale NCUT [7], and DNCUT

algorithms respectively. A total of 20 stopping criteria were used for each algorithm. Figure 5 plots

the three NCUT costs at each run-time t. This cost is averaged over all images in the dataset. We also

show the standard deviations of these measurements. Here, we used linear interpolation to complete

the plots. It is obvious that as the run-time of an algorithm increases, its NCUT cost decreases till

it reaches a stable value. All three algorithms exhibit this variation. From the plots, we conclude

that the original algorithm outperforms the multiscale one by 10.9 dB, while the DNCUT algorithm

outperforms the original one by 3.7 dB. This points to the obvious fact that solving Eq (4) directly

(i.e. NCUT on the augmented graph) is not equivalent to solving the NCUT problem on the pixel
nodes alone. Moreover, as p → 0, the original NCUT solution will approximate the DNCUT one

and H (D) → H (O). Ideally, the comparison should not be a relative comparison between the three

methods, but instead a comparison of each method with the global minimum of the original NCUT

problem in Eq (2). Since this problem is NP hard, obtaining its global minimum for non-trivially

sized problems is infeasible.

Figure 5: NCUT costs for the three NCUT algorithms are plotted versus run-time. The unconstrained

NCUT problem is addressed here. The red values are averaged over all the images in the Berkeley

segmentation dataset. The standard deviations are also plotted as blue bars.
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We also provide four qualitative examples in Figure 6. Columns (b)-(d) show the relaxed solutions

(i.e. prior to any discretization) produced by the original, the multiscale, and the DNCUT algorithms

on sample images in column (a), respectively. These solutions were obtained after the stable NCUT

value for each algorithm was reached. Comparing the segmentation results, we see that the DNCUT

solution is more detailed, which facilitates segmentation. If we consider the bird image in the second

row, we see that the DNCUT solution plays the role of a soft labeling, where pixels with similar

values are grouped together. So, the sky pixels are much darker than the foreground. This is not the

case for the other two algorithms, as they do not utilize the augmented graph.

(a): original image (b): original NCUT (c): multiscale NCUT (d): DNCUT

Figure 6: columns (b)-(d) show the stable NCUT solutions yielded by the three methods respectively,

when applied to the images in column (a). The unconstrained NCUT problem is addressed here.

5.3 Computational Analysis:

Here, we focus on a computational analysis of the three NCUT methods, when applied to the prob-

lem of unconstrained NCUT for the images in the Berkeley dataset. We study the relative change of

the NCUT solution with run-time. At every run-time t, we calculate the relative solution change as:

Δe = ‖�xt+1−�xt‖2

‖�xt‖2
. This change is averaged over all the images in the dataset. In Figure 7, we plot

Δe, as a percentage, for each algorithm. All three algorithms show the same type of variation. The

initial monotonic increase in Δe is followed by a monotonic decrease till a stable solution is achieved.
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Figure 7: Relative change of the NCUT solution with run-time

Moreover, DNCUT converges to a stable solution much quicker than the other two algorithms. For

a 5% change, the original NCUT algorithm requires 65 seconds on average to stabilize, while the

multiscale algorithm requires about 35 seconds. On the other hand, DNCUT requires about 11 sec-

onds to reach a stable solution. The disparity between the three algorithms is due to the inherent

computational nature of each algorithm. From these empirical results, we conclude that DNCUT (or

equivalently the conjugate gradient algorithm) has significantly better convergence/stability proper-

ties than the original or multiscale NCUT algorithms (or equivalently the Arnoldi/Lanczos method

for eigen-decomposition).

5.4 Interactive, Linearly Constrained, and Nonlinearly Constrained NCUT:

Here, we conducted three experiments, whereby a different type of constraint on the nodes of the aug-

mented graph is applied in each experiment. The first experiment addresses the problem of interactive

NCUT. In Figure 8, we consider the case of interactive NCUT, where a user marks the hard constraints

on the displayed image in column (b) with green strokes defining SA and red strokes defining SB .

Columns (c) and (d) show the segmentation results produced by DNCUT, with and without the hard

constraints respectively. Column (e) shows the corresponding segmentations produced by the original

NCUT algorithm without the hard constraints (i.e. unconstrained binary segmentation). It is evident

that with additional (user-defined) constraints, the resulting binary (i.e foreground vs. background)

segmentations become more perceptually relevant.

The second experiment addresses the problem of linearly constrained NCUT and shows some

results in Figure 9. In this experiment, we apply two types of linear constraints: (1) partial pixel

groupings and (2) −b0�1 ≤ �yu ≤ �1 to produce binary segmentations shown in column (c). The box

constraint (2) is a linear relaxation of the original discrete constraint in Eq (2). Such linear inequalities

cannot be handled by other NCUT algorithms. Unconstrained binary segmentations produced by

DNCUT and the original NCUT algorithm are presented in columns (d) and (e) respectively. The

partial groupings are determined by user defined strokes in column (b). The same colored pixels

define nodes of the graph that should belong to the same segment.

As in the second experiment, the third one also addresses the problem of partial groupings on

the nodes of the augmented graph. However, in this version of the partial grouping problem, the

box constraint on �yu is replaced by a ball constraint (i.e.
∥∥∥�yu −

(
1−b0

2

)
�1
∥∥∥2

2
≤ Nu

(
1+b0

2

)2
).

This ball constraint is a relaxation on the box constraint, since it does not implicitly guarantee that

yu(i) ∈ [−b0, 1]∀i = 1, · · · , Nu. This is an example of how a nonlinear (quadratic) convex con-
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straint can be applied to the DNCUT framework. We use an interior point (barrier) method to solve

the DNCUT problem under these two constraints. Since there is a single nonlinear constraint, solving

this version of the partial grouping problem is more efficient than the version in the previous experi-

ment. Figure 10 shows some segmentation results on real images. The constrained DNCUT solutions

(after discretization) are shown in column (c), while the unconstrained binary segmentations produced

by DNCUT and the original NCUT algorithm are presented in columns (d) and (e) for comparison.

The partial groupings are determined by user defined strokes in column (b). The same colored pixels

define nodes of the graph that should belong to the same segment.

(a): original image (b): hard constraints (c): interactive NCUT (d): uncon. DNCUT (e): uncon. NCUT

Figure 8: Shows examples of interactive NCUT, as compared to unconstrained NCUT and unconstrained DNCUT.

The original images are shown in column (a). In Column (b), we show the hard constraints of SA (green) and SB

(red), as marked by a user. Using these hard constraints, column (c) shows the interactive segmentations produced

by DNCUT. Columns (d) and (e) display the binary, unconstrained NCUT segmentations, produced by DNCUT and

the original NCUT algorithm respectively. These last two columns are shown for comparison with the interactive

DNCUT results.

5.5 Multi-Class Segmentation:

Figure 11 shows examples of unconstrained multi-class segmentation where C = 2, 3, 4. (b) shows

the DNCUT solution to the unconstrained problem. The clustering and merging algorithm in Section

4.3 is used to produce the segmentations in (d), (f), and (h), where the corresponding boundaries are

drawn in (c), (e) and (g). Even though this multi-class segmentation algorithm is suboptimal, it results

in reasonable segmentations. However, its performance is correlated with the quality/detail of pixel

groupings in the DNCUT solution. For example, in the FLOWERS case, the flowers are significantly

delineated in the DNCUT solution; however, the lady bugs on the flower petals and the blades of

grass in the out-of-focus background are not. This is primarily due to the nature of the weight matrix



Preprint: To appear in the International Journal on Computer Vision (IJCV 2010)

(a): original image (b): hard constraints (c): con. DNCUT (d): uncon. DNCUT (e): uncon. NCUT

Figure 9: Shows examples of linearly constrained NCUT, as compared to unconstrained NCUT and unconstrained

DNCUT. Two types of linear constraints are applied: partial pixel groupings and a box constraint on the values of the

DNCUT solution (i.e. −b0�1 ≤ �yu ≤ �1). Partial groupings are marked by users in red and green strokes, as shown in

column (b). Column (c) shows the binary DNCUT solutions to the linearly constrained NCUT problem. For visual

comparison, columns (d) and (e) show the binary, unconstrained NCUT segmentations, produced by DNCUT and

the original NCUT algorithm respectively.

used. In fact, our experiments used intervening contours at a single scale and no color information

was exploited. Incorporating more visual cues (e.g. color) into the edge weights and finding efficient

ways to combine results at multiple scales are left for future work.

Next, we show how the low-level, multi-class segmentation results for the three algorithms relate

to human segmentation results. Here, we use the Berkeley segmentation dataset, which contains

multiple benchmark (human) segmentations for each image in the dataset. To each image, we applied

the three multi-class algorithms, where the number of classes was set to the number of segments

labeled in the benchmark segmentations corresponding to this image. Then, the resulting (binary)

segment boundaries are averaged over all the benchmark segmentations. We used the evaluation

kit of [17] to plot the precision-recall curves shown in Figure 12. The three algorithms yield very

similar F-scores, which are higher than random performance (0.41) and significantly less than human

performance (0.79). They rank low on the list of state-of-the-art segmentation algorithms. More

importantly, comparing these NCUT algorithms together, we see that the multiscale one has the worst

F-score (0.46), while the original one has the best F-score (0.54). DNCUT registers an F-score (0.52)

that is very similar to the original algorithm. This is the case, even though DNCUT was shown

(in Section 5.2) to yield a smaller NCUT cost than the other algorithms. This discrepancy points

to the fact that the NCUT formulation for image segmentation does not correlate well with human

segmentation.
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(a): original image (b): constraints (c): con. DNCUT (d): uncon. DNCUT (e): uncon. NCUT

Figure 10: Shows examples of nonlinearly constrained NCUT, as compared to unconstrained NCUT and uncon-

strained DNCUT. Two types of constraints are applied: partial pixel groupings and a ball constraint on the values

of the DNCUT solution (i.e.
∥∥∥�yu −

(
1−b0

2

)
�1
∥∥∥2

2
≤ Nu

(
1+b0

2

)2
). Partial groupings are marked by users in red and

green strokes, as shown in column (b). Column (c) shows the binary DNCUT solutions to the nonlinearly constrained

NCUT problem. For visual comparison, columns (d) and (e) show the binary, unconstrained NCUT segmentations,

produced by DNCUT and the original NCUT algorithm respectively.

6 Conclusions and Future Work

We have presented a unifying DNCUT framework for solving convexly constrained NCUT problems

with data priors on the augmented graph nodes. We avoid using traditional eigen-decomposition, due

to its restrictions on the types of constraints it can handle and its computational complexity. In this

framework, any convexly constrained NCUT problem can be converted into a sequence of convex

QP’s. In the case of linear constraints, we propose an algorithm to efficiently find the global so-

lution of each QP. To validate the correctness of DNCUT, we compare it to state-of-the-art NCUT

algorithms. As compared to these algorithms, DNCUT provides a better and more computationally

efficient solution. We also show results of binary segmentation under hard and linear constraints, in

addition to multi-class segmentation results. In the future, we plan to develop a multiscale version

of this framework to handle larger graphs and to incorporate grouping information from weight ma-

trices computed at different scales. Furthermore, we plan to improve the multi-class segmentation

extension.
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TIGER︷ ︸︸ ︷

(a): image (b): DNCUT

(c): C = 2 (d): C = 2

(e): C = 3 (f): C = 3

(g): C = 4 (h): C = 4

OWLS︷ ︸︸ ︷

(a): image (b): DNCUT

(c): C = 2 (d): C = 2

(e): C = 3 (f): C = 3

(g): C = 4 (h): C = 4

FLOWERS︷ ︸︸ ︷

(a): image (b): DNCUT

(c): C = 2 (d): C = 2

(e): C = 3 (f): C = 3

(g): C = 4 (h): C = 4

Figure 11: Examples of unconstrained multi-class segmentation with C = 2, 3, 4, when applied to three images:

TIGER, OWLS, and FLOWERS. (b) shows the DNCUT solution to the unconstrained problem. (c), (e), and (g)

show the boundaries of the labeled segments in (d), (f), and (h) respectively. We refer the readers to [1] for all the

segmentation results.

Figure 12: Precision-Recall curves for the three NCUT algorithms, when applied to the Berkeley

human segmentation dataset.
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APPENDIX A

Dinkelbach Initialization for Eq (4) [Section (4.2)]

In this part, we will give a more detailed description of b0 = arg maxb≥0 r (b). We expand r (b) as in

Eq (10), where τ =
N−

(
�1T

−→
p+

u

)
N+

(
�1T

−→
p−

u

) .

r (b) =
−α

[
(N+)2 + (bN−)2

] [
N+

(
�1T

−→
p+

u

)
− bN−

(
�1T

−→
p−

u

)]
[
(N+)2 − b (N−)2

] − (1 − α)
[
N+

(
�1T

−→
p+

u

)
+ b2N−

(
�1T

−→
p−

u

)]

=

αb [b + 1]

⎡
⎣

(
�1T

−→
p−

u

)
N2

+

N−

⎤
⎦ [1 − τ ]

(
N+

N−

)2 − b
−

[
N+

(
�1T

−→
p+

u

)
+ b2N−

(
�1T

−→
p−

u

)]
(10)

Since α, b, �1T
−→
p−

u , N+, N−, and τ are non-negative numbers, we deduce that r (b) can be arbitrarily

large by setting b = b0 = κ
(

N+

N−

)2
, where κ is chosen such that,

{
κ = 1 − ε if τ ≤ 1
κ = 1 + ε if τ > 1

where

⎧⎪⎪⎨
⎪⎪⎩

ε ≥ 0, ε → 0

τ =
N−

(
�1T

−→
p+

u

)
N+

(
�1T

−→
p−

u

)

APPENDIX B

Solving a Convex QP with Linear Constraints [Section (4.4)]

In the next three parts, we will describe how to solve a convex quadratic programming problem with

general linear constraints, of the following form:

min �xTA�x + �bT�x

s.t.

{
C�x ≤ �d
E�x = �f

(11)

Next, we consider the case when only a single equality constraint exists (e.g. in the case of uncon-

strained or interactive NCUT). Then, we consider the case of multiple equality constraints followed

by general linear constraints (i.e. in/equalities).
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Solving a Convex QP with a Single Linear Equality Constraint

Here, we will provide the closed form solution (�x∗) to the following convex QP problem.

min
[
�xTA�x + �bT�x

]
(12)

s. t. �eT�x + f = 0

We derive the Lagrangian dual of Eq (12), L (�x, ν), and determine the primal-dual solution, �x∗ and

ν∗, in closed form. Equations (14,15) evaluate these optimal solutions. Note, that the closed form

solution of the primal problem is valid, since L (�x, ν) is convex in �x. Also, the form of ν∗ directly

follows from the concavity of L (�x∗, ν). The optimal primal and dual solutions can be obtained

efficiently by solving a pair of linear systems: A�x = �b and A�x = �e, using preconditioned conjugate

gradients.

L (�x, ν) = �xTA�x +
(
�b + ν�e

)T
�x + νf (13)

Primal Solution: �x∗ = arg min
�x

L (�x, ν) = −1
2
A−1

[
�b + ν∗�e

]
(14)

Dual Solution: ν∗ = arg max
ν

L (�x∗, ν) =
2f − �eTA−1�b

�eTA−1�e
(15)

Solving a Convex QP with Multiple Linear Equality Constraints

Here, we will provide the closed form solution (�x∗) to the following convex QP problem.

min
[
�xTA�x + �bT�x

]
s. t. E�x +�f = 0

Similar to the previous part, we solve the primal dual problems by solving the linear system in Eq

(16). However, in this case, the primal and dual variables are coupled in the same linear system.

[
2A ET

E �0

] [
�x∗

�ν∗

]
= −

[
�b
�f

]
(16)

Solving a Convex QP with General Linear Constraints

Here, we will discuss an active set based method that iteratively solves the following convex quadratic

programming problem. Let I be the set of inequality constraints.

min �xTA�x + �bT�x

s.t.

{
C�x ≤ �d
E�x = �f

We present the main steps involved in applying the active set method.
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1. Initialize a counter k = 0. Choose a feasible initial guess �x(k), which satisfies a certain set

S
(k)
E of the constraints with equality, including all the equality constraints and a subset of the

inequality constraints. These constraints are referred to as active constraints. They correspond

to the following set of linear equalities:G(k)�x = �h(k).

2. Compute a step direction �δ(k), by solving a convex QP with linear equality constraints corre-

sponding to those of S
(k)
E . This is done using the method outlined in the previous part.

�δ(k) = arg min �zTA�z +
(
�b + 2A�x(k)

)T
�z

s.t. G(k)�z = �0

3. If �δ(k) = �0, then check the Lagrangian multipliers corresponding to the active inequality con-

straints. If they are all positive, then the final solution has been obtained; otherwise, remove the

constraints corresponding to the negative multipliers from S
(k)
E . On the other hand, if �δ(k) �= �0,

take a step from the previous solution along �δ(k) (i.e. �x(k) = �x(k+1) + α(k)�δ(k)). The step size

is computed as follows, where �g(k)
i is the ith row of G(k) and h(i)(k) is the ith element of �h(k).

α(k) = min

(
1,

h(p)(k) − �g(k)T
p �x(k)

�g(k)T
p

�δ(k)

)

where p = arg min
i ∈ S

(k)
E ∩ I

�g(k)T
i

�δ(k) > 0

[
h(i)(k) − �g(k)T

i �x(k)

�g(k)T
i

�δ(k)

]

This step value guarantees that the current solution lies on the set of active constraints. If

α(k) < 1, then add the pth constraint to S
(k)
E . Increment k.

4. Iterate through steps 2-3 until convergence.
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